Compliant ankles and flat feet for improved self-stabilization and passive dynamics of the biped robot "RunBot"
نویسندگان
چکیده
Biomechanical studies of human walking reveal that compliance plays an important role at least in natural and smooth motions as well as for self-stabilization. Inspired by this, we present here the development of a new lower leg segment of the dynamic biped robot “RunBot”. This new lower leg segment features a compliant ankle connected to a flat foot. It is mainly employed to realize robust self-stabilization in a passive manner. In general, such self-stabilization is achieved through mechanical feedback due to elasticity. Using real-time walking experiments, this study shows that the new lower leg segment improves dynamic walking behavior of the robot in two main respects compared to an old lower leg segment consisting of rigid ankle and curved foot: 1) it provides better self-stabilization after stumbling and 2) it increases passive dynamics during some stages of the gait cycle of the robot; i.e., when the whole robot moves unactuated. As a consequence, a combination of compliance (i.e., the new lower leg segment) and active components (i.e., actuated hip and knee joints) driven by a neural mechanism (i.e., reflexive neural control) enables RunBot to perform robust selfstabilization and at the same time natural, smooth, and energyefficient walking behavior without high control effort.
منابع مشابه
From Passive Dynamic Walking to Passive Turning of Biped walker
Dynamically stable biped robots mimicking human locomotion have received significant attention over the last few decades. Formerly, the existence of stable periodic gaits for straight walking of passive biped walkers was well known and investigated as the notion of passive dynamic walking. This study is aimed to elaborate this notion in the case of three dimensional (3D) walking and extend it f...
متن کاملStable Gait Planning and Robustness Analysis of a Biped Robot with One Degree of Underactuation
In this paper, stability analysis of walking gaits and robustness analysis are developed for a five-link and four-actuator biped robot. Stability conditions are derived by studying unactuated dynamics and using the Poincaré map associated with periodic walking gaits. A stable gait is designed by an optimization process satisfying physical constraints and stability conditions. Also, considering...
متن کاملStabilization and Walking Control for a Simple Passive Walker Using Computed Torque Method (RESEARCH NOTE)
Abstract The simple passive dynamic walker can walk down a shallow downhill slope with no external control or energy input. Nevertheless, the period-one gait stability is only possible over a very narrow range of slopes. Since the passive gaits are extremely sensitive to slope angles, it is important to use a control strategy in order to achieve a wide range of stable walking. The computed to...
متن کاملFast Biped Walking with a Sensor-driven Neuronal Controller and Real-time Online Learning
In this paper, we present our design and experiments on a planar biped robot under the control of a pure sensor-driven controller. This design has some special mechanical features, for example small curved feet allowing rolling action and a properly positioned center of mass, that facilitate fast walking through exploitation of the robot’s natural dynamics. Our sensor-driven controller is built...
متن کاملFast biped walking with a reflexive controller and real-time policy searching
In this paper, we present our design and experiments of a planar biped robot (“RunBot”) under pure reflexive neuronal control. The goal of this study is to combine neuronal mechanisms with biomechanics to obtain very fast speed and the on-line learning of circuit parameters. Our controller is built with biologically inspired sensorand motor-neuron models, including local reflexes and not employ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011